
The Remote on the Local: Exacerbating Web Attacks Via Service Workers Caches

The Remote on the Local
Exacerbating Web Attacks Via Service Workers Caches
Marco Squarcina (TU Wien)
 @blueminimal
15th IEEE Workshop on Offensive Technologies. May 27, 2021

Joint work with
Stefano Calzavara (Università Ca' Foscari Venezia & OWASP)
Matteo Maffei (TU Wien)

The Remote on the Local: Exacerbating Web Attacks Via Service Workers Caches

Service Workers

● Key enabler of PWAs
● Client-side web application proxies able

to intercept HTTP requests
● Cache API allows to store HTTP

responses, offline capabilities
● SW execute in a separate context, no

direct DOM access
● Operate based on origin and path,

event-based activation

Page SW

Network

Browser

SW Cache

Progressive Web Applications are the latest trend in the evolution of the Web. This is mostly
due to the fact that they offer a user experience similar to traditional applications by
providing responsiveness and by supporting offline usage.

Service Workers are the key enabler of PWAs, since they act as a client-side web application
proxy. A Service Worker can indeed intercept all HTTP requests made by the web application
and modify the responses with arbitrary content. Using the Cache API, Service Workers can
also store HTTP responses and serve them at a later time.

Service Workers execute in a separate context from the JavaScript code running in the page.
That means that they have no access to the DOM. They also are not allowed to access cookies
via document.cookie and cannot call other synchronous APIs like localStorage or
sessionStorage.

The Remote on the Local: Exacerbating Web Attacks Via Service Workers Caches

self.addEventListener('fetch', (e) => {
 e.respondWith(
 caches.match(e.request).then((r) => {
 return r ||
 fetch(e.request).then((res) => {
 return caches.open('static').then(
 (cache) => {
 cache.put(e.request,
 res.clone());
 return res;
 }
);
 });
 })
);
});

Cache-First/Offline-first Pattern

Page SW

Network

Browser

SW CodeSW Cache

1

2

3

4

5

6

To exemplify the intended usage of the Cache API, we provide a code snippet that
implements a basic version of a pattern called cache-first that is used to minimize network
traffic and provide offline capabilities.

1. The Service Workers intercepts all the requests by registering a listener on the “fetch”
event

2. It checks if the corresponding resource is found in the cache using the “match”
method

3. If this is the case, the cached response is used
4. Otherwise, the resource is fetched from the network
5. It is then added to the cache, first by opening a given cache and then by using the

“put” method
6. Finally, it is served to the web application

The Remote on the Local: Exacerbating Web Attacks Via Service Workers Caches

Secret Exfiltration

Page w. XSS SW

Network

● SW Cache can be accessed also from
scripts running in the page

● Web attacker with XSS on a page can
leak cached secrets bound to the entire
origin!

● This includes secrets left over from a
previous session like
○ personally identifiable information
○ passwords
○ security tokens
○ multimedia content

Cache.match

fetch

SW Cache

Our attack is enabled by the fact the Service Worker Cache API is accessible from scripts
running in the same origin where the Service Worker was registered. This means that an
attacker with an XSS on a page can get arbitrary read and write access to the Cached
content for the whole origin.

From security standpoint this means that an attacker can leak secrets from the cache, i.e.,
sensitive data left over from a previous authenticated session. This includes personal
information, multimedia content, security tokens, passwords, and so on.

The Remote on the Local: Exacerbating Web Attacks Via Service Workers Caches

Content Corruption

Page w. XSS SW

Network

● Cache entries can also be arbitrarily
modified and forged

● An attacker can modify a response to
○ Inject malicious JS (e.g. keylogger)

(by editing a cached JS file or by
injecting a script in a page)

○ Tamper HTTP response headers
● Similar to persistent client-side XSS

○ Reflected XSS → persistent attack
○ Denial of Service (DoS)
○ Amplification of the attack surface

Cache.put

Page

HTML, JS,
...

Compromised

SW Cache

1

2

2 3

The attacker can also perform arbitrary corruption of the Cache content. In this example the
attacker has a reflected XSS on a page, but wants to spread a malicious payload to other
cached resources.

1. The attacker tampers with cached responses in order spread the injection of a
malicious script, like a keylogger

2. Then, the victim performs an access to a legitimate page such as login.html, that
happens to be in the cache

3. At this point, the Service Worker returns a page containing the keylogger, which
exfiltrates the login credentials

This attack resembles a persistent client-side XSS, because it turns an ephemeral reflected
XSS into a persistent attack. Notice that the Cache does not expire unless explicitly cleaned.
Even if the Service Worker is reinstalled, the cache is not altered by default.

This technique can also be used to amplify the attack surface and to mount a DoS attack by
preventing a user from accessing the website.

The Remote on the Local: Exacerbating Web Attacks Via Service Workers Caches

● Framing
○ Disable CSP frame-ancestors and

X-Frame-Options

● Privilege Escalation
○ Disable Feature Permission Policy to

access webcam, microphone,
geolocation, etc.

PITM on HTTP responses

● Inspect and modify response objects, including HTTP headers
● Not possible with a traditional XSS, more similar to HTTP response splitting attack

● Break Isolation
○ Avoid SOP enforcement by removing

CSP sandbox directive and iframe
attribute

● Bypass Defensive Programming
○ Void the robustness of JS code

(Constants, Frozen Objects, Sealed
Objects, …)

Other than tampering with the body of HTTP responses, an attacker can also inspect and
manipulate the HTTP headers. This grants much more power than a persistent client-side XSS.

For example, by disabling the frame-ancestors directive of the Content-Security Policy or the
X-Frame-Options header, an attacker could frame a page that was previously protected and
mount attacks like clickjacking or exploit certain classes of xs-leaks.

Other examples include breaking the document’s isolation by removing the “sandbox” directive
from iframes and CSP.
Also, stripping out the Permission Policy header - in case it is enforced - gives the ability to
access the webcam and the microphone of the user.

Furthermore, the injected script can be executed anywhere in the page. This enables the
attacker to bypass defensive programming practices such as freezing objects, which is a
standard protection against prototype pollution attacks.

The Remote on the Local: Exacerbating Web Attacks Via Service Workers Caches

Page SW

SW Cache

Network

Data Collection

● Runtime monitoring of Cache API calls
from SWs and pages

● Monitor injected by mitmproxy in SW
code and by puppeteer in the pages

● Inspect home page and search engines
for links to visit (<50 per origin)Database

To evaluate the pervasiveness of this threat, we performed a large scale assessment of the
Cache API usage by websites. Mitmproxy and puppeteer for Google Chrome were used to
inject a runtime monitor in the browser that records accesses to the cache performed in the
page context and inside Service Workers. All tracked API calls and their arguments were then
saved into a database for later analysis.

For each one of the origins that we processed, we visited up to 50 different links in the same
origin to maximise the coverage of our analysis. We also investigated the main subdomains of
the sites in our dataset.

The Remote on the Local: Exacerbating Web Attacks Via Service Workers Caches

Large Scale Assessment

● Crawled Tranco top 150K sites, visited >4M pages (June ‘20)
○ 6,709 sites use Service Workers (4.6%)
○ 3,436 sites use Service Workers + Cache API (51.2%)
○ Broken or missing CSP in 95.8% of sites using SW + Cache API

(Potentially vulnerable to our attack if a XSS is found in a page of the site)

● Automated vulnerability testing
○ 2,769 (65%) sites blindly execute a JS

payload we added to cached content
(HTML or scripts)

○ 2,040 sites cache HTML (38% executes)
○ 2,148 sites cache JS (75% executes)

Cached
Policies

Overall we started from the Tranco list and we crawled 150K sites, for a total amount of 4M
distinct pages. We found that Service Worker adoption as of June 2020 is still low (4.6%), but
more than half of these sites are using the Cache API.

Since our threat model requires to have an XSS on the site, we analysed CSP adoption and
found out that the deployment is broken or completely missing in 96% of the websites that
are using Service Workers and the Cache API.

We implemented an automated testing strategy to verify the potential exploitability of the
issue on websites with no CSP or with a trivially broken CSP:

1. We visited a random selection of links to fill the cache with some content
2. Then, we infected all JavaScript and HTML files with our payload, and we also

stripped out all security headers
3. We visited the pages again and checked whether our payload was executed

We performed this injection using a browser extension that is available on our website. We
found out that our payload was blindly executed by 65% of the tested sites.

The Remote on the Local: Exacerbating Web Attacks Via Service Workers Caches

Page SW

Network

Browser

SW Cache

Countermeasure

Straightforward solution

● Restrict Cache API to SW
● Compatibility issues with existing sites:

○ ~6% of the sites using the Cache
API, access the cache from a script

○ Identified legitimate patterns

Compatible solution

● Restrict Cache API to SW by default
● Custom header or integration with

DocumentPolicy to relax the protection

Mitigation
response.url

==
request.url

A straightforward solution is to prevent scripts in the page to access the Cache API, basically
restricting it to the Service Worker context only. Although secure, this solution would
introduce compatibility issues on sites that are using of the Cache API from page context.
From our measurements, we discovered that around ~250 sites would be affected by this
change. Furthermore, we identified some legitimate caching patterns that require cooperation
between Service Workers and scripts in the page.

So we propose to restrict the Cache API to Service Workers by default, but at the same time
we suggest a way to relax the protection using either a custom header or the new Document
Policy, so to preserve compatibility. As a mitigation, web developers can also harden the code
of their Service Workers to protect against malicious modifications of the cache. This can be
done by checking that the url attribute of cached responses corresponds to the url of the
request. By doing so it’s possible to spot tampering attempts, because synthetic responses
have the “url” attribute set to the empty string. Notice that this change would be
incompatible with websites using synthetic responses.

The Remote on the Local: Exacerbating Web Attacks Via Service Workers Caches

Conclusion

● Powerful attack against Service Workers on the design of the Cache API

● PITM-like capabilities that couldn’t be achieved by a persistent client-side XSS

● Strong, but realistic, threat model
○ XSS still widespread (35.6% of the Google Vulnerability Reward Program payout in 2018 ~ 1.2M $)*
○ CSP often misconfigured (~95%)
○ Large scale assessment (150K sites) + successful automated testing (65%)

● Proposed a backward-compatible redesign of the Cache API that would have an
immediate security benefit for the large majority of websites

* Artur Janc. Baby steps towards the precipice https://www.arturjanc.com/usenix2019/

To summarize our contributions, we introduced a powerful attack on Service Workers that
revolves around the design of the Cache API.

We showed that this attack grants person-in-the-middle capabilities that are more powerful
than a persistent client-side XSS.

Although our threat model is strong, we proved that it’s realistic considering that XSS are still
widespread and mitigations such as CSP are not correctly implemented. Our large scale
assessment showed 65% of the sites that are using Service Workers with the Cache API are
affected.

Lastly, we proposed a backward-compatible redesign of the Cache API that would
immediately secure the large majority of the sites affected by the issue discussed in this talk.

The Remote on the Local: Exacerbating Web Attacks Via Service Workers Caches

Demos, PoCs, Extension, Paper ↴
https://swcacheattack.secpriv.wien/

The Remote on the Local: Exacerbating Web Attacks Via Service Workers Caches

Thank you!
https://swcacheattack.secpriv.wien/

Marco Squarcina (TU Wien)
marco.squarcina@tuwien.ac.at
@blueminimal

Q+A?

 Icons from https://www.flaticon.com

mailto:marco.squarcina@tuwien.ac.at

